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Abstract The Mediterranean Basin, renowned for its cultural, ecological, and climatic significance,
frequently endures high‐impact weather events driven by Mediterranean cyclones (Medcyclones), atmospheric
low‐pressure systems characterized by counterclockwise wind circulation. These meteorological phenomena,
sometimes comparable to hurricanes in their intensity and impact, shape the region's weather and are responsible
for diverse natural hazards, including torrential rainfall, flash floods, windstorms, and sea surges. Such events
have profound and far‐reaching socio‐economic and ecological consequences, particularly for coastal and
densely populated areas. Despite their critical role, the systematic assessment of Medcyclones' contribution to
socio‐economic losses and the effective communication of associated risks remains limited. This review
synthesizes the existing body of knowledge on the socio‐economic impacts of Medcyclones, with a focus on
vulnerable sectors such as human health, energy, transportation, agriculture, and cultural heritage. It highlights
pressing knowledge gaps, including the need for interdisciplinary research and improved engagement with
stakeholders and the public. Advancing the field, this work provides an integrated perspective on Medcyclones'
impacts and outlines strategies for resilience, including enhancing predictive models, fostering cross‐sectoral
impact studies, and improving disaster preparedness. By bridging the knowledge gaps, this review aims to
inform policy‐making and support the development of adaptive measures to mitigate the escalating threats
posed by Medcyclones in the context of a changing climate.

Plain Language Summary The Mediterranean region is known for its culture, environment, and
unique climate, but it also faces severe weather caused by Mediterranean cyclones, or “Medcyclones.” These
storms, sometimes similar to hurricanes in their strength and effects, bring heavy rain, flash floods, strong
winds, and dangerous sea conditions. These events can cause serious damages for people, especially in coastal
areas and cities, affecting homes, jobs, and natural environments. Despite the importance of Medcyclones, we
still don't fully understand how much damage they cause to people's lives and the economy, and there isn't
enough clear communication about the risks they bring. This study reviews our current knowledge about
Medcyclones impact on key areas like health, energy, transportation, farming, and cultural landmarks. It also
identifies gaps in our understanding and calls for better collaboration between scientists, governments, and
communities. The study provides new ideas to help protect against Medcyclones, such as improving weather
predictions, studying how different areas are affected, and better planning for disasters. By addressing these
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challenges, this research aims to help decision‐makers create strategies to protect people and make communities
stronger as the risks from Medcyclones increase with climate change.

1. Introduction
The Mediterranean Basin is a hot spot for climate change (IPCC, 2021), warming up to 1.5 times faster than the
global mean (MedECC, 2020; Zittis, Almazroui, et al., 2022). The Mediterranean lies in a transitional zone,
between the arid North African climate and the more temperate and wetter central European climate, where
additional strong warming is expected in the future, while this will likely coincide with mean precipitation de-
creases (Cherif et al., 2020; Reale et al., 2022). A consensus exists about the magnification of extreme phenomena
in the area under climate change, such as notably prolonged and stronger atmospheric and marine heat waves or
more intense droughts (IPCC, 2021). Expected changes in climate extremes will have profound and far‐reaching
implications for the rapidly increasing Mediterranean population of more than 500 million inhabitants and their
socio‐economic activities.

Current conditions and future projections consistently point to significant and increasing risks during the coming
decades in most impact domains, such as water resources, energy, agriculture and food, health, and human se-
curity. In the Mediterranean region, which is already challenged by extreme weather and high‐impact events, new
weather records are set every year. Extreme heat waves, droughts, desertification, increased number of wildfires,
sea storms, extreme precipitation, floods, increased pollution and disease patterns, water rationing, food shortage,
and massive migrations, among others, strongly affect societies and ecosystems with the exacerbation of their
impact under a changing climate (Hochman et al., 2021; Jacob et al., 2018; MedECC, 2020; Waha et al., 2017;
Zittis, Ahrens, et al., 2022; Zittis, Almazroui, et al., 2022).

Mediterranean cyclones (hereafter Medcyclones, Figure 1) are a type of extratropical cyclone (referred to simply
as a cyclone in this context), characterized by a central region of relatively low surface air pressure compared to
the surrounding atmosphere, with counterclockwise wind circulation in the Northern Hemisphere and clockwise
circulation in the Southern Hemisphere. They are responsible for many of the meteo‐marine hazards that affect the
region, including storm surges, extreme waves, heavy rainfall and flash floods, landslides, windstorms, and even
compound events (e.g., Flaounas et al., 2022; Jansà et al., 2014; Lionello et al., 2012, 2019; Portal et al., 2024;
Rousseau‐Rizzi et al., 2024). Based on climate simulations for the period 2005–2015, Medcyclones have been
responsible for up to one‐third of annual rainfall (Flaounas et al., 2018) and 70% of the total regional rainfall and
wind extremes (Flaounas, Raveh‐Rubin, et al., 2015). Around 90% of heavy rainfall cases in the western Med-
iterranean are typically associated with a cyclone (Jansà et al., 2001) that, regardless their intensity, properly
organizes the mesoscale moist flow promoting precipitation. Similarly, destructive sea storms driven by intense
cyclones represent the main threat to the Mediterranean coastal communities causing flooding, beach erosion, and
infrastructure damage (Lionello et al., 2019 and references therein).

Considering model limitations due to approximations in numerical methods and in the description of physics
processes, there is medium‐to‐high confidence in a future reduction in the number of Medcyclons, particularly
during winter and under high‐forcing scenarios (e.g., Cherif et al., 2020; Priestley & Catto, 2022; Raible
et al., 2010). With respect to their intensity, climate projections are less robust, as some models suggest a decrease
in the frequency of the most intense cyclones, while others show a decrease in the intensity of extreme cyclones
(Cherif et al., 2020). Moreover, climate projections indicate a decreasing frequency and increasing intensity of
Medicanes (e.g., González‐Alemán et al., 2019). Medicanes, short for Mediterranean hurricanes, are Medcy-
clones with tropical‐like characteristics, that is, a warm core extending into the upper troposphere, an eye‐like
feature in its center, an almost windless center surrounded by nearly closed sea surface wind circulation with
maximum wind speed within a few tens of km afar. They are associated with high‐impact phenomena such as
heavy rain, strong wind, and storm surges. Enhanced duration, destructiveness, and tropical features ofMedicanes
are expected (IPCC, 2021; Tous et al., 2016). In the last decades, advances regarding observational data sets and
modeling capabilities, also fostered by international programs in the Mediterranean, such as MEDEX (Jansà
et al., 2014), HyMeX (Drobinski et al., 2014) or the EU COST Action CA19109 MedCyclones (Flaounas
et al., 2022), have significantly contributed to improving our knowledge concerning the environment,
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characteristics, and evolution of Medcyclones, but also the socio‐economic impacts. Still, relevant gaps remain,
and further investigation is necessary in this field.

The socio‐economic impacts of Medcyclones are a consequence of the large spectrum of weather‐induced natural
hazards related to these phenomena (Flaounas et al., 2022; Lionello et al., 2006). It is through torrential rains, the
subsequent potential flash floods, and destructive sea storms driven by cyclones that the main socio‐economic
damage is inflicted on Mediterranean coastal communities. The damaging effects of Medcyclones dispropor-
tionately impact highly vulnerable areas, particularly urban and densely populated coastal regions. Key sectors
such as human health, energy, agriculture, critical infrastructure, and transportation are mostly affected, often
resulting in significant human casualties and economic losses. However, these impacts are not unavoidable. By
implementing robust resilience strategies and proactive measures, societies can mitigate the risks and protect both
lives and livelihoods from the challenges posed by Medcyclones.

To go beyond the current state of knowledge, there is a need for a paradigm shift toward impact studies
encompassing multi‐sectoral effects. This approach will help us evaluate the plausible consequences of climate
change on human activities and formulate more effective climate action policies. Therefore, this paper reviews the
existing knowledge regarding the socio‐economic impacts of cyclones in the Mediterranean area with a particular
emphasis on vulnerable sectors. As a consequence of this exercise, the main knowledge gaps in the societal
impacts of Medcyclones will be identified, and the vulnerability of the main socio‐economic sectors will be
assessed. To this end, Section 2 provides a summary of weather‐induced natural hazards resulting from the
occurrence of Medcyclones and their future projections. Section 3 discusses current knowledge of the socio‐
economic impacts of Medcyclones, such as human health, energy, infrastructures, food security, and agricul-
ture as well as natural and cultural heritage, and Section 4 provides information on the current operational da-
tabases that record and archive weather hazards and related impacts. Finally, Section 5 summarizes the main
points of the study and identifies knowledge gaps.

2. Medcyclones
2.1. Physical Understanding of Medcyclones

TheMediterranean Basin emerges for its high cyclogenesis frequency, as already pointed out in pioneering studies
between the 50s and the 60s (Petterssen, 1956 among others) and later confirmed by cyclone density statistics based
on reanalysis data sets (e.g., Hoskins & Hodges, 2002; Sickmöller et al., 2000). Medcyclones represent a critical
component of the atmospheric circulation of the region since they are the primary modulator of the synoptic and
mesoscale variability (Buzzi, 2012), also associated with hazardous weather conditions (Lionello et al., 2006). A
recent review article (Flaounas et al., 2022) provides a thorough revision of the latest knowledge in the field.

Robust results have been obtained exploiting gridded reanalysis data sets, concerning the seasonal and
geographical distribution of Medcyclones (see Figure 1b in Lionello et al., 2016), especially considering intense

Figure 1. Schematic representation illustrating the chain of hazards, their impacts, and the socio‐economic systems affected
by Mediterranean cyclones as key drivers in the region.
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cyclones (see Figure 1 in Flaounas et al., 2022). The main cyclogenetic areas have been identified as the Gulf of
Genoa, the Atlas Mountains, and the Aegean Sea. Also, other regions, such as the Black Sea, the Iberian
Peninsula, and the Eastern Mediterranean emerged in the statistics. Climatological studies have revealed that
cyclogenesis is concentrated in certain areas located south of the main topographic reliefs surrounding the basin
and nearby areas, suggesting that the complex orography of the region plays a role in modulating cyclone activity
(Buzzi et al., 2020; Jansà et al., 2014). Finally, a fraction ofMedcyclones does not formwithin the basin but enters
from the Atlantic. The occurrence of intense cyclones in the region is characterized by strong seasonal variability
(Flaounas et al., 2022), peaking in the colder season and attaining a minimum in summer, although some dif-
ferences in the annual cycle have been revealed between northern and southern parts of the basin (Hochman
et al., 2018). While winter cyclones are often deep systems, shallow thermal lows prevail in summer.

Winter season, from December to March, is also the most favorable period for explosive cyclones, which are
rapidly intensifying Medcyclones with a great potential to cause extreme weather events (Carniel et al., 2024).
Intense cyclones that predominantly impact the northwestern Mediterranean, either move down along the Tyr-
rhenian and Adriatic Seas or enter the basin from the southwest or south of the Atlas Mountains. Also, Eastern
Medcyclones, often termed “Cyprus Lows,” due to their genesis close to the island of Cyprus, and cyclones over
the Ionian, Aegean, and Black seas emerge for their high track density (Alpert et al., 1990; Lionello et al., 2016).
Upstream synoptic processes over the Atlantic are strictly connected with Mediterranean cyclogenesis, which
often occurs in the presence of a large‐scale baroclinic precursor, such as an upstream Rossby wave breaking
(Hochman, Scher, et al., 2022; Raveh‐Rubin & Flaounas, 2017). Medcyclones exhibit specific characteristics that
make them different from their extra‐tropical counterparts developing over the open ocean, that is, weaker in-
tensity, smaller size, and a shorter lifetime. Within the large variety of cyclone subtypes identified in the Med-
iterranean (Flaounas et al., 2022), Medicanes have drawn attention, mostly due to their severe impacts. Medicanes
usually are sustained by particularly strong diabatic processes (convection and surface fluxes), attaining structural
characteristics similar to tropical cyclones. However, dynamical processes in mature Medicanes show pro-
nounced case‐to‐case variability (Miglietta & Rotunno, 2019).

2.2. Extreme Hazards Related to Medcyclones

Heavy precipitation (HP, Figure 1), commonly exceeding 100mmday− 1, constitutes amajormeteorological threat
in the western Mediterranean (WMed, Khodayar et al., 2018, 2021, 2022) and it is the main trigger of floods and
landslides. Every year, recurrent events affect the areawith fatal consequences for infrastructure and human losses.
As shown in Flaounas et al. (2018) more than 70% of the total rainfall extremes are associated with a cyclone.
Historical trends of heavy precipitation vary in magnitude and sign according to the location, season, and period of
interest (Mathbout et al., 2018; Zittis, 2018; Hochman et al., 2018). Flash floods are typically poorly observed and
understood, hydrological extremes (Amponsah et al., 2018), leading to highly uncertain forecasts of these events;
however, they represent one of the most damaging meteorological hazards in the area (Llasat, 2021; Petrucci
et al., 2019).While a reduction in flooding in medium and large catchments across southern Europe in recent years
has been related to decreasing precipitation and rising evaporation (Blöschl et al., 2019), the observed increase in
vulnerability to flooding events has been largely connected to human‐induced factors. These include extensive land
use changes, accelerated urbanization, and population growth, which exacerbate the impacts of flash floods and
heavy precipitation events more significantly than climatic changes alone (Papagiannaki et al., 2022; Tramblay &
Somot, 2018). Climate projections indicate a future increase in mean surface pressure as well as a weakening or
northward shift of Mediterranean storm tracks resulting in reduced precipitation (Cherif et al., 2020; Hochman
et al., 2020). The southernMediterraneanwill likely experience the strongest drying during thewet season,October
toMarch, which is alsomore critical for replenishing scarce water resources (Cherif et al., 2020; Zittis et al., 2019).
The response in the northern Mediterranean is the result of compensation between a reduction in the number of
Medcyclones and an increase in the precipitation generated by each storm (Zappa et al., 2015), leading to a decrease
in the frequency of light to medium events and a future increase in the frequency of high‐intensity events (Giorgi
et al., 2019). As a result, besides the overall precipitation reduction, the intensity of the most extreme events is
expected to increase throughout the Mediterranean (Zittis et al., 2021). According to regional climate projections,
this is more evident in the northern part of the basin and under high‐emission scenarios (Tramblay&Somot, 2018).

Sometimes, cyclogenesis over the Mediterranean may impact other regions outside the basin. This is the case of
Vb cyclones (Hofstätter & Chimani, 2012; Messmer et al., 2015, 2017, 2020), low‐pressure systems originating in
the Gulf of Genoa, propagating eastward south of the Alps and then north‐eastwards toward the Baltic Sea.
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Although rare, they are of particular interest as they have often caused major river flooding over the northern flank
of the Alps and Central Europe, especially during the summer season. Simulations for the future period show
insignificant changes in Vb‐cyclone frequency, mean intensity, and precipitation in the selected catchments of
central Europe (Pothapakula et al., 2022a, 2022b).

Lightning events, commonly associated with convective storms, tropical cyclones, or extratropical cyclones
(Frame et al., 2017), play a major role in triggering wildfires, especially in remote regions where human activity is
minimal. In Mediterranean environments, dry lightning, occurring during thunderstorms that produce little or no
rainfall, significantly increases wildfire risk by leaving fire fuel dry (Mariani et al., 2018). High atmospheric
instability and vigorous updrafts in these convective storms enhance lightning formation, and even minimal
precipitation can evaporate quickly under warm, dry conditions. With climate warming expected to intensify
these conditions, the contribution of lightning to wildfire ignitions is likely to grow, as further highlighted by the
UNEP report on extraordinary landscape fires (UNEP, 2022).

In this region, intense cyclones contribute to less than 10% of the lightning activity, but under certain conditions,
this contribution might reach 20%–30% (Galanaki et al., 2016). Only one‐third of intense Medcyclones present
lightning activity close to their center. Nevertheless, taking into consideration the frontal structures, then cy-
clones' contribution to lightning activity is certainly higher but remains an open question. Regarding Medicanes
and lightning activity, the latter usually precedes the mature stage associated with tropical‐like features
(D’Adderio et al., 2022).

Landslides, frequently linked to prolonged or intense rainfall and flash floods, are primarily triggered by Med-
iterranean extratropical cyclones and Medicanes (Görüm & Fidan, 2021; Lagouvardos et al., 2022; Nastos
et al., 2021). These natural hazards rank among the most destructive in the Mediterranean region, causing sig-
nificant economic losses and numerous fatalities (Camera et al., 2021). A noteworthy example is “Ianos,” affected
Greece on 17–19 September 2020, the strongest Medicane observed in the Mediterranean, responsible for more
than 1,400 landslides in Greece within 2 days (Valkaniotis et al., 2022; Zekkos et al., 2020). Landslides often
happen where they have already occurred in the past (Temme et al., 2020). Local studies on future changes in the
risk of landslides' hazards show a projected increase of up to 1.5 and 4 times in the near and far future,
respectively, under the high‐end scenario of climate change (Bernardie et al., 2021).

Extratropical cyclones are also often responsible for extreme winds (Figure 2), causing severe damage in the
region (e.g., Raveh‐Rubin &Wernli, 2016). About two‐thirds of such windstorms are caused by cyclones located
in the Mediterranean, the rest by Atlantic or Northern European cyclones. Also, the majority of compound rain–
wind extremes occur in the neighborhood of a Mediterranean cyclone (Portal et al., 2024). Cyclone forcing is

Figure 2. Reports of severe wind, extreme rainfall, and tornadoes between 2008 and 2022 in the Mediterranean region,
collected by the European Severe Storm Laboratory (ESSL) and its partners in the European Severe Weather Database
(ESWD; Dotzek et al., 2009). The criteria for selecting extreme rainfall events are outlined in the “ESWD Reporting
Criteria” document, which can be accessed at https://www.essl.org/cms/european‐severe‐weather‐database/reporting/.
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often enhanced by local topographical features: for instance, the intensity of Mistral, a strong cold dry northerly
wind of southern France, is determined by the presence of Genoa lows and upper‐tropospheric potential vorticity
anomaly (Givon et al., 2021) as well as by constriction through the Rhône Valley. The same atmospheric pattern
may intensify Sirocco, a south‐easterly wind over the Adriatic Sea, through a channeling effect due to the Dinaric
Alps (Cavaleri et al., 2019). Future changes in wind speeds are expected to be small, although the poleward shift
in the storm tracks could lead to significant changes in extreme values (medium confidence; IPCC, 2021). Using
multi‐model simulations with global and regional climate models in the IPCC SRES A1B scenario, Donat
et al. (2011) found a decrease in extreme wind speeds over the Mediterranean. Nissen et al. (2014) similarly
predicted a reduction in windstorms, due to the decline in both the frequency and the intensity of Medcyclones
over most of the Mediterranean basin. Zappa et al. (2015) found a decrease of up to 25% in the frequency of
extratropical cyclones (and associated windstorms) throughout the Mediterranean basin, with all CMIP5 models
agreeing on the sign of the change. Reale et al. (2022) found a robust increase in cyclone‐related wind intensity in
the central Mediterranean based on an ensemble of fully coupled regional climate models under scenario RCP8.5.
For Medicanes, González‐Aleman et al. (2019) found an increase in power dissipation due to more durable and
intense, although less frequent, events. Hence, while the future conditions imply a decrease in the frequency of
Mediterranean windstorms, their impacts will likely be exacerbated during the most extreme events, particularly
under high‐emission pathways.

Tornadoes (Figure 2) are also potentially dangerous phenomena in the Mediterranean (Antonescu et al., 2016,
2017). Eight of ten tornadoes with the highest fatalities in Europe affected the Mediterranean area (Groenemeijer
& Kühne, 2014). Generally, they form in the framework of large‐scale cyclonic circulations (Tochimoto
et al., 2021). Bagaglini et al. (2021) identified substantial regional variability in the conditions favorable to their
intensification between Italian continental and maritime regions.

Although the spatial distribution of reports (Figure 2) does not perfectly align with the actual occurrence of severe
weather—largely due to inconsistencies in reporting—a few key patterns emerge. For instance, impactful heavy
rainfall events are most common near coastlines and the Alps. Tornado activity, on the other hand, predominantly
involves the coastlines, being associated with landfalling waterspouts. An exception to this trend is the Po Valley
in Northern Italy, where tornadoes are also frequently observed further inland.

Cyclonic activity has additionally been confirmed to significantly correlate with dust episodes in the Eastern
Mediterranean (Dayan et al., 2008). Satellite data and model simulations have identified cyclogenesis processes
as significant meteorological patterns that result in dust uptake due to the strong surface wind (Rizza et al., 2017).
In most such cases, Medcyclones develop close to dust sources, with their core being either over the African
continent or farther north in the Mediterranean Sea (Schepanski & Knippertz, 2011). For the Central and Eastern
Mediterranean, the primary meteorological situation responsible for transporting large amounts of mineral dust
particles is related to cyclonic activity (Kallos et al., 2007; Meloni et al., 2008). In spring and early summer,
cyclones develop under the strong thermal contrast between the temperature of the cooler marine waters and the
warmer continental surfaces (Saharan thermal lows in the south of Atlas Mountains). These cyclones then
propagate eastward, through the thermal gradient path, crossing the Mediterranean between Libya and Egypt and
transporting desert dust over the Eastern Mediterranean Basin. Well‐developed Medcyclones drive almost a
quarter of Saharan dust events, transporting dust through the warm advection ahead of the cold front of these
eastward‐moving low‐pressure systems (Varga, 2020). Categorizing dust events into moderate, high, and extreme
cases, Flaounas, Kotroni, et al. (2015) concluded that the cyclone contribution can vary from 20% to 70% of the
dust events over the Mediterranean, primarily affecting its central and eastern side (Figure 3). In this study,
attributing dust events to cyclones‐related circulations was performed by associating the 1° × 1° latitude–
longitude grid points fulfilling “dust event criteria” with cyclone circulation criteria (Flaounas, Kotroni,
et al., 2015) within the overlapping area. Airborne dust in this aspect is considered to have been transferred by
cyclone‐induced circulation.

In certain areas of the eastern Mediterranean and the Middle East, increasing dust concentrations can be partly
attributed to decreased precipitation, lower soil moisture, reduced relative humidity, and higher temperatures over
the past decade, highlighting the sensitivity of dust emissions to climate change (Klingmüller et al., 2016). Future
scenarios, particularly the ones related to high emissions of greenhouse gases, imply a notable expansion of desert
areas due to the desiccation of ephemeral water bodies (Zittis, Almazroui, et al., 2022).
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In the Mediterranean, many of the most intense storms at sea are generated by strong winds associated with
cyclones (Ferrarin, Pantillon, et al., 2023; Lionello et al., 2019; Patlakas et al., 2021). Sea storms represent the
main threat to coastal communities because they determine storm surges and severe sea states that may cause
beach erosion, flooding of low‐lying coastal areas, damage to infrastructure, and the important cultural heritage

Figure 3. (a) Percentage of days with dust (grid points presenting Ångström Exponent (AE) < 0.7 and Absorption Aerosol Index (AI) > 1) over the Mediterranean region
for the whole 8‐year period. (b) Percentage of days with dust spatially associated with cyclones. (c–e) Percentage of dust days of moderate (c), high (d), and extreme
(e) intensity associated with cyclones defined as 25%–75%, 75%–95%, and 95%–100% quantiles of AOD per grid. Dots represent cyclone locations contributing to dust
days of each intensity class (black dots denote winter cyclones, magenta dots denote spring cyclones, green dots denote summer cyclones and blue dots denote autumn
cyclones). (Source: Flaounas, Kotroni, et al., 2015).

Reviews of Geophysics 10.1029/2024RG000853

KHODAYAR ET AL. 7 of 29

 19449208, 2025, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024R

G
000853 by C

ochrane C
zech R

epublic, W
iley O

nline L
ibrary on [05/05/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



exposed to these phenomena (Chaumillon et al., 2017). The city of Venice is
a paradigm of exposed historical and cultural values. In fact, the shallow
northern Adriatic Sea is the Mediterranean sub‐basin where storm surges
reach higher values (Marcos et al., 2009), mainly triggered by a strong
southeasterly moist and warm wind, called Sirocco, generally caused by
cyclones generated in the western Mediterranean Sea (Cavaleri et al., 2019;
Lionello et al., 2021). Such a synoptic situation drove the most extreme
storm surges and high waves events (in 1966, 1979, 2018, and 2019)
(Lionello et al., 2021 and references therein). On 12 November 2019, two
cyclones were active simultaneously in the Mediterranean region (Ferrarin
et al., 2022; Miglietta et al., 2023): a deep cyclone over the central‐southern
Tyrrhenian Sea (C1 in Figure 4) and a fast‐moving small local depression
traveling northwestward over the Adriatic Sea along the Italian coast (C2 in
Figure 4).

Such a peculiar meteorological situation caused the rising of the sea level over
the whole Northern Adriatic Sea, resulting in flooding and severe damage to
the historic center of Venice (with an estimated economic loss of some
hundreds of M€; Schlumberger et al., 2022) and the nearby coastal area.
Medcyclones also strongly impact the central Mediterranean Sea (Ferrarin,
Orlić, et al., 2023; Patlakas et al., 2021; Scicchitano et al., 2021; Toomey
et al., 2022), while Medicanes also affect the western Mediterranean Sea,
creating hazardous wave conditions in the open sea and along the coast
(Toomey et al., 2022). In 2020, a low‐pressure system caused the most
extreme wave and storm surge ever recorded along the eastern Iberian
Peninsula, with floods, damage to coastal infrastructures, coastal erosion, and
a total of 13 fatalities (Amores et al., 2020).

The projected future reduction in cyclone activity may result in an associated
decrease in storm surges and waves in some regions of the Mediterranean Sea
(Flaounas et al., 2022; Toomey et al., 2022). However, a warmer Mediter-
ranean Sea (Pastor et al., 2020) may lead to an increase ofMedicanes intensity

(Koseki et al., 2021 and references therein). It is worth noting that, in the future, the impact of such events along
the Mediterranean coast will be exacerbated by sea level rise resulting in coastal flooding even during non‐
extreme cyclones (Ferrarin et al., 2022).

Due to the concomitant occurrence of different severe meteo‐marine phenomena over large areas (e.g., the storm
Vaia in 2018 that impacted Corsica, Liguria, Alps, and several locations along the Adriatic coast; Cavaleri
et al., 2019, 2022; Davolio et al., 2020; Giovannini et al., 2021), Medcyclones often represent a compound multi‐
hazard situation. Compound hazards affecting the Mediterranean tend to fall into the categories of wet‐windy
(Catto & Dowdy, 2021; Owen et al., 2021; Raveh‐Rubin & Wernli, 2015, 2016; Ridder et al., 2020), cold‐wet
(Berkovic et al., 2021; de Luca et al., 2020; Lemus‐Canovas, 2022), hot‐dry (Ermitao et al., 2021; Feng
et al., 2020; Lemus‐Canovas, 2022; Vogel et al., 2022), and compound flooding events (where flooding comes
from two or more sources such as storm surge and heavy precipitation; Camus et al., 2021; Couasnon et al., 2020;
Ridder et al., 2020; Sanuy et al., 2021).

The Mediterranean is particularly a hotspot for co‐occurring extreme precipitation and wind events (Catto &
Dowdy, 2021; Hochman et al., 2021; Owen et al., 2021; Rousseau‐Rizzi et al., 2024; as shown for example in
Figure 5), especially during the autumn and the winter season (although also in summer). Figure 5 illustrates the
monthly distribution of weather‐related events that caused rainfall‐related damage, wind‐related damage, or a
combination of both in Greece from 2000 to 2022. While precise attribution of these events to Medcyclone
activity is lacking, it is generally understood that they are mostly associated with extratropical cyclones, often
accompanied by embedded thunderstorm environments and frontal systems (Catto & Dowdy, 2021; Messmer &
Simmonds, 2021).

Over the western Mediterranean from 60% to 80% of events are linked to an extratropical cyclone (within
1,100 km), while over the central and eastern Mediterranean, this percentage reaches 100%. Several studies focus

Figure 4. Mean Sea level pressure (black dashed isolines), 10 m wind (red
arrows), and storm surge (color shade) on 12 November at 21:00 UTC.
Labels C1 and C2 indicate the two cyclones.
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on extreme wind, precipitation, and their frequency of occurrence over the Mediterranean without defining
explicit links of the events to the Medcyclones (Hillier & Dixon, 2020; Ridder et al., 2020). However, Hénin
et al. (2021) found that 85% of the concurrent extreme precipitation and wind events in the Iberian Peninsula are
associated with cyclones, mostly Atlantic, and many with atmospheric rivers.

Medcyclones, mainly Cyprus lows (forming in the eastern Mediterranean, around Cyprus), can produce cold and
wet compound events over Israel (Berkovic et al., 2021) and the broader Eastern Mediterranean (De Luca
et al., 2020; Hochman et al., 2020). These systems transport rain and cold air from the north. Other studies found
that cold and wet compound extremes are associated with cold frontal systems (e.g., Zhang et al., 2021). Camus
et al. (2021) found the Mediterranean to be a hotspot for the potential for compound flooding when considering
the interaction of precipitation, river discharge, storm surge, and waves, particularly on the northern coast.

Co‐occurrence is more significant during autumn and during winter. The specific events that can be attributed to
Medcyclones remain unknown. Additionally, Medcyclones significantly increase the likelihood of events
involving extreme waves (Sanuy et al., 2021). Similarly, cyclones in the North Atlantic, particularly near the
Iberian Peninsula, are often associated with compound extreme events, primarily characterized by heavy pre-
cipitation. This region of Spain has experienced six compound storm surges and river discharge events over the
period 1980–2014, defined as co‐occurring annual maxima of these two measures (Couasnon et al., 2020). Many
parts of the northern Mediterranean coast have experienced similar numbers of these compound events.

Few studies have considered recent historical trends in the occurrence of compound events, and even fewer are
devoted to the projections of compound extremes over the Mediterranean. Lemus‐Canovas (2022) found an
increase in the dry/warm extremes, but a decrease in wet‐cold and dry‐cold. The Mediterranean Oscillation
(Conte et al., 1989) plays a role in determining the frequency of these extremes and is also a significant factor in
the occurrence of Medcyclones. Vogel et al. (2022) found that warm and dry spells have increased in the
Mediterranean in the past 40 years primarily due to temperature increases rather than decreases in precipitation.
Hot and dry extremes occurring within the same week, month, or year are projected to increase in frequency
(Vogel et al., 2020). While precipitation extremes are generally projected to increase, the shift of the storm track
away from the Mediterranean (e.g., Priestley & Catto, 2022; Raible et al., 2010) could result in little change or
even a decrease in compound wind and precipitation events (Ridder et al., 2022).

In conclusion, Medcyclones are key drivers of weather variability in the region, leading to extreme events such as
heavy precipitation, windstorms, storm surges, and compound hazards like flooding and landslides. These storms
are influenced by the complex topography of the Mediterranean Basin and ongoing climate change, which in-
creases vulnerability in both coastal and inland areas. Projections suggest varying impacts, with potential de-
creases in cyclone frequency but increases in the intensity of Medicanes and compound extremes. As sea levels
rise and storm tracks shift, coastal communities face growing risks of flooding, erosion, and damage.

Figure 5. Monthly distribution of extreme weather events that caused rainfall‐related damage, wind‐related damage, or a
combination in Greece in 2000–2022 (Source: HIWE‐DB, www.meteo.gr/weatherEvents.cfm, Papagiannaki et al., 2013).
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3. Derived Socio‐Economic Impacts of Medcyclones Activity in the Mediterranean
3.1. Human Health

Medcyclones can affect public health through various natural hazards. These may include floods associated with
heavy precipitation (Khodayar et al., 2021), cold spells or heat waves (Khodayar & Paredes‐Fortuny, 2024;
Paredes‐Fortuny & Khodayar, 2023), wind and sand/dust storms (Hochman, Scher, et al., 2022), and others.
Besides the exposure to these harsh weather conditions, health impacts strongly depend on socio‐economic and
demographic factors, mainly age, gender, the existence of pre‐existing or chronic diseases, geographic location,
level of acclimatization, occupational health and safety, and quality of health services (Linares et al., 2020).

The impact of Medcyclones on public health can generally be separated into direct and indirect effects. Direct
effects occur during the passage of a cyclone, which may cause deaths and injuries due to flooding (e.g.,
drowning), cold (e.g., affecting the homeless), or warm conditions (e.g., in the special case of “Sharav” cyclones
in the Eastern Mediterranean), and catastrophic winds (e.g., flying debris, falling trees or road accidents). The
indirect effects mainly occur after a storm dies out, inducing power outages or electrocution from damage to
electric infrastructure, fires, and burns, and worsening of chronic illnesses due to lack of access to adequate
medical care or medication (Goldman et al., 2014). For example, in 2013, during the intense Eastern Mediter-
ranean storm named “Alexa,” four people died in Israel directly from the harsh weather conditions of the storm
(Hochman, Marra, et al., 2022; Hochman et al., 2019). In 2020, four people lost their lives when Ianos Medicane
affected Greece (Lagouvardos et al., 2022). More recently, 14 casualties were reported in Spain from stormGloria
(de Alfonso et al., 2021). In all cases, many regions were disconnected from electricity for many days following
the event. This may have caused other health implications that were not reported or attributed to these events. The
indirect effects on public health, particularly from cyclones associated with casualties and property loss, may also
include short and long‐term mental illnesses and disorders, including depression, anxiety, or post‐traumatic stress
disorders (Mulchandani et al., 2020; Weilnhammer et al., 2021).

Floods are one of the most damaging natural hazards in the Mediterranean region, causing many fatalities every
year, particularly across Southern Europe. There are still inconclusive results regarding the observed trends in
deaths from floods in the Mediterranean region (Llasat, 2021). However, an analysis of flood fatalities from 1980
to 2018 in eight Euro‐Mediterranean countries (Petrucci et al., 2019) showed statistically significant increasing
trends in flood fatalities for Greece, Italy, and South France. The reasons for this increase remain inconclusive and
may be attributed to either a rise in flood occurrence, a growing population in flood‐prone areas, extensive land‐
use changes or inadequate management practices. According to the results, flood fatalities occurred more often
outdoors and mainly on the road while driving to/from work or home. The primary cause of death was drowning
while being swept away by a torrent. Males aged between 30 and 65 years were at higher risk than females. Those
over 65 were less vulnerable and mainly died indoors, blocked in a flooded room, usually while sleeping. The
projections for shorter‐lived but more intense heavy precipitation events associated with Medcyclones may
exacerbate impacts on human health and mortality (Hochman et al., 2020; Llasat, 2021). The triggering mete-
orological event, that produced the flood, is rarely reported in the literature. Still, the high percentage of autumn
and winter flood fatalities with respect to other seasons (Diakakis et al., 2023) may reasonably be attributed to the
high occurrence of Medcyclones during this time of the year (Hochman et al., 2019). Moreover, the collocation of
the largest death tolls from extreme floods and extratropical storm occurrences in the western Mediterranean
indicates that Medcyclones are probably the main trigger. There is a clear contrast between the reported deaths in
the western and eastern parts of the Mediterranean region (https://books.openedition.org/irdeditions/23181?
lang=de). In the Eastern Mediterranean, floods have caused fewer casualties, except for the flood in Lebanon on
17 December 1955 (∼440 deaths according to the Emergency Events Database (EM‐DAT, Guha‐Sapir
et al., 2021)) induced by an intense Med cyclone. On 26 and 27 November 1927, a torrential rainfall event in
Algeria caused more than 400 casualties and more than 1,200 victims of extended flooding (Sardou et al., 2018).
Precipitation during this event was nearly half of the average annual total. In 2001, an extremely intense Med-
cyclone caused one of the most catastrophic windstorms and flood events in Algeria, with over 600 deaths in the
country, four deaths, and damage estimated at 37.3 million EUR in the Balearic Islands. The total number of
casualties was over 4,500, in the African countries bordering the Mediterranean (Llasat et al., 2010). Another
catastrophic flash flood occurred in August 2002 in Spain, Algeria, and Italy, while in France the “Gard event” (8–
9 September 2002) caused damages of 1.2 billion EUR and 23 casualties (Llasat et al., 2010). Damaging flash
floods occur almost annually in autumn affecting the Spanish Mediterranean coast with catastrophic
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consequences due to heavy rainfall events (Khodayar et al., 2018, 2022). In terms of losses, thousands of houses,
properties, shops, cars as well as public infrastructure are damaged. Besides damage to agriculture and urban
areas, traffic jams bring cities to a standstill. Thousands of people are affected by railway closures, airport
operation halts and/or re‐routing, and long delays. Buildings, roads, and railways are flooded and damaged and
damage can also be caused to sewage systems, electricity, and water systems, in addition to the loss of lives.

Accounting of deaths attributable to catastrophic events is reported in international natural disaster databases
(Figures 6a and 6b), however, these estimates might underestimate the number of deaths from low‐mortality flood
events, which are the majority in Europe. For example, Petrucci et al. (2019) have shown that almost half of the
fatal flood events over the period 1980–2020 caused only one fatality. A recent report from the European
Environmental Agency also highlights that, despite only 3% of all events being responsible for 60% of economic
losses, it is also important to record small‐ and medium‐scale events to fully assess climate change impacts and to
support adaptation actions (EEA, 2021 Briefing no. 21/2021).

Based on ESWD recorded severe weather fatalities (Figure 6a) most severe weather‐related fatalities since 2006
are caused by the flash floods that occur after heavy rainfall. Especially in eastern Mediterranean countries, many
fatalities are also caused by lightning. We speculate that the lower level of mechanization of agriculture in those
regions implies more people working in the fields in locations where they are vulnerable to lightning. Outside of
North Africa and the Middle East, severe winds also cause a sizable fraction of fatalities. Comparatively, few
people are killed by tornadoes, although the number is not negligible in Turkey and Italy.

Medcyclones can drive extreme dust transport, increasing concentrations, expanding exposure, and worsening
public health impacts (see Section 2.2). Indeed, about two‐thirds of the total yearly dust yield in the Negev Desert
in Israel is linked to Medcyclones (Dayan et al., 2008). The human health effects of dust storms range from
respiratory disorders (including asthma, tracheitis, pneumonia, allergic rhinitis, and silicosis), to cardiovascular
disorders, such as strokes, conjunctivitis, skin irritations, meningococcal meningitis, valley fever, diseases

Figure 6. (a) Severe weather fatalities between 2006 and 2021 recorded in the European Severe Weather Database (ESWD)
by hazard type, (b) Flood fatalities (FFs) from 1980 to 2020, at the NUTS 3 (territorial units as defined by https://ec.europa.
eu/eurostat/web/nuts) level across the Mediterranean study areas of FFEM‐DB (Database of Flood Fatalities from the
Europe‐Mediterranean region. Source: Papagiannaki et al., 2022).
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associated with toxic algal blooms, and mortality and injuries related to transport accidents (Aghababaeian
et al., 2021; Zhang et al., 2016). Both chronic exposure and short‐term elevated concentrations of airborne dust
can pose serious risks to human health. In the eastern Mediterranean, premature mortality attributable to chronic
PM2.5 (inhalable Particulate Matter with an aerodynamic diameter of less than 2.5 μm) exposure is mainly related
to natural Aeolian dust processes (Evans et al., 2013). In the so‐called “dust belt” from North Africa across the
Middle East and South Asia to East Asia, the fraction of cardiopulmonary deaths caused by atmospheric desert
dust can reach 15%–50% (Giannadaki et al., 2014). In several Mediterranean countries, including Cyprus, Italy,
Israel, and Spain, cardiovascular and respiratory admissions and mortality rates are enhanced during dust events
(Lelieveld et al., 2015; Stafoggia et al., 2016). While MedCyclones that drive most dust storms in the region could
be less frequent in a warmer world (see Section 2), the dried lake beds lying in topographically low basins will be
highly susceptible to aeolian erosion, therefore, dust emissions in the region, including sources in theMiddle East,
could be increased (Ludwig & Hochman, 2022a; Zittis, Almazroui, et al., 2022).

Extremely low temperatures, sometimes driven or influenced by Medcyclones, can impact the health and well‐
being of populations in the Mediterranean. Despite the region's generally mild winters, excess winter mortality
and morbidity have been documented in several Mediterranean countries (López‐Bueno et al., 2021). Cold ex-
tremes have been associated with increased all‐cause, cardiovascular, and respiratory mortality (Weilnhammer
et al., 2021), though these impacts are strongly linked to socio‐economic factors such as energy poverty and
building standards (Kyprianou et al., 2019), as well as influenza outbreaks (Antunes et al., 2017). Notably,
Hochman et al. (2021) found a significant correlation between Medcyclones and influenza in Israel, the Pales-
tinian Authority, and Jordan.

While future assessments for the region tend to focus on the health effects of heat extremes—under the
assumption that a warming climate may reduce cold‐related mortality (Gasparrini et al., 2017)—Medcyclones can
also contribute to high temperatures. This is particularly evident in the case of “Sharav” cyclones, which are
frequent in the eastern Mediterranean during spring (Hannachi et al., 2011). Moreover, higher temperatures
during winter in the future may reduce the effects on mortality (de Schrijver et al., 2023).

3.2. Energy

In an energy‐dependent society, Medcyclones‐related hazards can cause widespread damage to the power
infrastructure (production, storage, and grid), leading to severe outages and public disruption. For instance,
intense precipitation events leading to floods may affect many aspects of the power system. Flooding can cause
severe damage to the equipment, leading to interruptions in service continuity and widespread outages (Mova-
hednia et al., 2022; Sánchez‐Muñoz et al., 2020). Heavy rainfall can further increase soil moisture, which, when
combined with strong winds, increases the vulnerability of trees to wind damage (Gardiner et al., 2013).
Consequently, overhead power lines are at greater risk of damage, primarily due to falling trees (Láng‐Ritter
et al., 2024). The volume of forest damage follows an approximate power‐law relationship with wind gust speed,
with an exponent of 10 (Valta et al., 2019). In densely forested countries, the relationship between wind gust
speed and power outages is similar, and a recent study shows that the number of power outages increases
exponentially with wind gust speed. The highest correlation was found with the tenth power of daily maximum
wind gusts, highlighting the critical relationship between wind gust speed and power outages, in densely forested
areas (Haakana et al., 2024). In cases where average wind speeds exceed 27 m/s, direct damage to the power grid
is possible, and transmission towers may even collapse (Li et al., 2022). In the Mediterranean region, a large share
of power lines is overhead, and the total length has increased between 2015 2020 in nearly all examined countries
(Figure 7). For example, the passage of the Ianos cyclone over Greece caused major disruptions in the electricity
supply of several areas for 4–5 days (Lagouvardos et al., 2022). According to the Hellenic Electricity Distribution
Network Operator in Greece, more than 450 points that suffered severe damages, such as broken poles and pipes,
were inspected and fixed on the medium (MV) and low voltage (LV) network (Kefalonia, Zakinthos, and Ithaki
islands). This network has a total length of 1,148 and 1,771 km, respectively, and supplies 56 MV and 63,300 LV
customers. In the area of Karditsa, the profound destruction caused the failure of the electricity supply for 29,000
customers with 6,000 of them being on the mountain network which suffered extensive damages, especially from
tree collapsing and landslides, and the rest in areas that overflew with water at lengths ranging from 40 to 100 km.
Apart from the overhead lines, extensive damage from intense precipitation events during cyclones can occur in
underground substations. Water pumping for the reconnection of these stations asks for strategic restoration plans,
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considering that their presence in a wet environment for long time periods increases the risk for further future
failures.

Strong winds, freezing‐rain storms, and heavy snow‐load are some of the major causes of overhead power line
failures (Gonçalves et al., 2023). Beginning with the last, tree branches often fail to hold the weight of the
accumulated snow, break, and cause extended damage to the power lines. Most power lines in the Mediterranean
region are above the ground and indeed most of the encountered issues are principally a consequence of fallen
trees (Ciapessoni et al., 2020). It is known that several factors impact tree uprooting, for example, tree type, soil
moisture, soil type, and tree canopy (Gardiner et al., 2010; Liu et al., 2022). In addition, there is a direct cor-
relation between the proximity of trees to distribution lines and the vulnerability of the lines to severe windstorms.
Such conditions were encountered during a severe snowstorm that affected South Greece, particularly Athens in
January 2022. During the storm named “Hope” (“Elpida”) heavy snowfall conditions led to power outages that
lasted several days under freezing conditions (Patlakas et al., 2024). Freezing rain events are less common near
the Mediterranean; however, there are a few examples of massive power outages in Mediterranean countries. For
instance, in 2014 Slovenia experienced a historical blizzard and freezing rain event caused by a deepening
secondary low‐pressure system in the Northern Mediterranean (Markosek, 2014). The damage to power trans-
mission lines was caused by accumulating freezing rain on the power lines as well as the breaking branches of
trees due to the snowfall. In total 30 km of power lines were destroyed, and 170 km were inoperative resulting in
250,000 people being without electricity for days (Vajda et al., 2014). A similar freezing rain event paralyzed
public transport in Bucharest, Romania due to large power interruptions in 2019 (Andrei et al., 2019).

Regarding energy production, there is a growing interest in wind energy applications and gas exploitation
(Abanades, 2019; Kostianoy & Carpenter, 2019). Focusing on renewables, areas characterized by moderate to
strong winds, are favorable for wind energy investments. However, extreme winds can lead to structural failures
of wind turbines. Overstress and strain in the tower or the blades can lead to tower collapse and blade fracture
(Chou et al., 2013, 2018). To protect the system, predefined cut‐off thresholds are applied, and wind turbines are
switched off, affecting production. Moreover, cyclonic activity and the associated frontal systems can lead to fast
changes in wind speed magnitude and direction causing sharp ramps in wind power production. In such scenarios,
especially when combined with high energy demands, the power grid can be stressed, posing a challenge to
transmission system operators (Steiner et al., 2017).

The Mediterranean is highly favorable for solar energy production due to its high solar resources, which, in some
areas of southern Europe, exceed 2,000 kWh/m2 annually (Hadjipanayi et al., 2016). As a result, solar energy

Figure 7. The total length of power lines (overhead lines and ground cables) per area of the country in the Mediterranean region in 2015–2020. Data sources: https://data.
med‐tso.org/ and https://www.worlddata.info/.
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constitutes a significant portion of the region's energy mix. This is also linked to its high versatility, with ap-
plications ranging from large solar parks to smaller systems, such as rooftop solar panels on residential and
commercial buildings. Medcyclones can affect Photovoltaic (PV) installations in two ways. From a production
perspective, increased cloudiness could reduce output, potentially leading to energy droughts. However, the
overall long‐term effect is minimal. On the other hand, Medcyclones can also be associated with hail (Laviola
et al., 2022), which, in extreme cases, can damage PV panels (PVEL, 2021), resulting in economic losses.

Medcyclones also modulate the sea state, which has a severe impact on a spectrum of energy operations from
offshore wind energy applications to offshore oil and gas exploration, production, and transfer. Installation,
support, and maintenance of such installations require the desired sea state and particular weather windows that
guarantee the safety of the people and the infrastructure (Gintautas & Sørensen, 2017). Nuclear power plants
require water for the reactor's cooling system and are, therefore, often located close to rivers or seas. There are a
few nuclear power plants also located in the Mediterranean region, which Medcyclones can also affect. The high
sea level induced by extra‐tropical cyclones can cause safety issues in nuclear power plants (Rantanen
et al., 2021).

3.3. Transportation and Infrastructure

Medcyclones pose serious threats to populations, assets, critical infrastructure, and human activities, mostly
located or taking place in coastal areas (Toomey et al., 2022). The intense winds, precipitation, and coastal
flooding due to storm surges and wind waves hitting the coasts (Bakkensen, 2017), and the large amounts of
rainfall over small areas and short periods causing pluvial and urban flooding (Diakakis et al., 2017) are the main
causes. Floods in the Mediterranean mainly affect urban areas, within 10–20 km of the coastline due to the
conversion of water courses into streets (Marra et al., 2022). The damage from flash floods recorded in inhabited
areas is due to the vulnerability of the elements at risk in the fluvial‐coastal plains examined. Among the causes of
the flood frequency increase in the last decades are the effects of the urban expansion in areas of fluvial pertinence
and climatic change, namely the interaction between anthropogenic landforms and hydro‐geomorphological
dynamics (Faccini et al., 2021). So far, one of the most impactful events, the Medicane Rolf that brought
flooding to Italy, France, and Spain in November 2011, resulted in total insured losses of more than 1 billion USD
in France (Toomey et al., 2022), and a total of 1.25 billion USD including Italy and Spain, most claims for
inundated homes, businesses, and vehicles (Llasat, Caumont, et al., 2014; Llasat, Marcos, et al., 2014).

More rarely, when the synoptic conditions are favorable, Medcyclones can lead to significant snowfalls that may
result in flight delays, cancellations, or disruptions in ground transportation systems, including highways and
railways (Bech et al., 2013). Furthermore, the impact on sea conditions can have a large impact on harbor in-
frastructures such as flooding of docks, railways, and roads (Sánchez‐Arcilla et al., 2016). The wind around the
cyclone center is the main cause of positive and negative sea level anomalies, depending on its onshore or offshore
direction (Lionello et al., 2019). Strong wind gusts (>17 m/s), often occurring during intensive large‐scale low‐
pressure systems, can harm transportation, as falling trees can block roads and railways, cause electricity cuts, and
disrupt airport operation and navigation (Ryley et al., 2020; Vajda et al., 2014). The operation of ports and
maritime transport can also be affected by Medcyclones. The associated high waves and storm surges, in parallel
with strong winds, and intense precipitation can directly affect harbor infrastructure and ships in route (Hanson &
Nicholls, 2012; Sánchez‐Arcilla et al., 2016). Indeed, in the Mediterranean Sea, several ship accidents caused by
high waves during intense cyclones have been reported (e.g., Bertotti & Cavaleri, 2008; Cavaleri et al., 2012).

The most extreme intensity (and rarer) events significantly impact maritime transport operations (Cherif
et al., 2020; Zittis et al., 2021). In particular, the increased coastal flooding and overtopping due to mean sea‐level
rise are the main contributors to the amplified risk of port operation disruption (Izaguirre et al., 2021). The smaller
Mediterranean islands, with a strong dependence on maritime means for transporting goods and passengers, are
less resilient to the expected changes (Zittis, Ahrens, et al., 2022).

The impacts of three major cyclones from the past decade, Zorbas (primarily affected Greece, southern Italy, and
Turkey on 28–29 September 2018, Ianos primarily affected Greece on 18–19 September 2020), and Daniel
impacted Greece, Libya, and parts of the eastern Mediterranean in early September 2023, can serve to illustrate
this section, highlighting their effects on transportation and infrastructure in Greece and Libya. These Medcy-
clones caused significant disruptions to transportation networks and critical infrastructure in Greece and Libya.
Cyclone Zorbas brought severe winds, torrential rainfall, and flooding, leading to road closures, damage to coastal
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highways, and power outages in regions such as Kalamata, Methoni, and Argolis (Kouroutzoglou et al., 2021;
Portmann et al., 2020; Scicchitano et al., 2021). Key transport links, including the Evripos Bridge and Eretria‐
Oropos ferry service, were temporarily suspended. Cyclone Ianos resulted in extensive flooding, landslides,
and infrastructure damage, particularly in Thessaly, where over 400 km2 of land, including urban areas like
Karditsa, was inundated. This led to eroded roads, damaged power lines, and blocked transportation routes,
severely disrupting socio‐economic activities (Diakakis et al., 2023; Zimbo et al., 2022). Cyclone Daniel
(Flaounas et al., 2024; Hewson et al., 2024) had an even broader impact, with road collapses, bridge failures, and
damage to critical infrastructure in central Greece, compounded by the closure of ports that hampered recovery
efforts (Mavroulis et al., 2024; WTW, 2024). In Libya, Daniel triggered catastrophic flooding, resulting in dam
failures, the destruction of roads and bridges, and widespread disruption of communication and power networks
(ACAPS, 2023).

3.4. Food Security and Agriculture

Agriculture and water resources are closely interlinked in Mediterranean countries and shape the social
development in many rural areas (Iglesias et al., 2011). Any environmental stresses on agriculture production,
including Medcyclones‐related hazards, will pose additional challenges to food security. Medcyclones provide
most of the wet‐season rainfall, which is critical for replenishing water resources and beneficial for agriculture
and ecosystems. However, the most extreme events, associated with intense rainfall and flooding, in addition to
severe winds, can threaten plants and agriculture production. Excessive amounts of precipitation and excess
water in the soil can be responsible for wheat loss due to the proliferation of pests and diseases, leakage of
nutrients, inhibition of oxygen uptake by roots, and interference with agronomical practices (Zampieri
et al., 2017).

The reduction of Mediterranean cyclone occurrences is consistent with the overall mean precipitation decrease
observed in the region (Trigo et al., 2000). Reale et al. (2022), using a Med‐CORDEX ensemble of seven regional
coupled systemmodels that downscaled CMIP5 RCP8.5 scenarios, showed an overall decrease in cyclone‐related
precipitation in future scenarios, too. The projected future decrease in cyclones may have dramatic impacts on
water availability. As cyclones are a major source of precipitation in the Mediterranean, their reduction is ex-
pected to lead to drier conditions, with serious consequences for agriculture, water storage, and overall water
supply.

In a hotter and drier Mediterranean, partly due to fewer Medcyclones (see Section 2), the yield and quality of
several key crops for the region, including cereals, vegetables, pulses, grapevines, and olive trees, will be
adversely affected, with the impacts being more pronounced in the water‐stressed southern and eastern Medi-
terranean countries (Fraga et al., 2020; Papadaskalopoulou et al., 2020; Santillán et al., 2020; Varotsos
et al., 2021).

Furthermore, extreme weather events in relation to cyclonic phenomena have been identified as key climate
change‐related stressors by the Commonwealth Marine Economics Program (Impacts%20of%20Climate%
20Change%20on%20Fisheries%20in%20the%20Coastal%20and%20Marine%20Environments%20of%20Carib-
bean%20Small%20Island%20Developing%20States;%20SIDS). Turner et al. (2020) acknowledged that changes
in intensity, severity, and frequency of storms pose significant threats to fisheries, which can be a challenge for
countries in which fisheries constitute a significant sector with implications for several aspects of coastal com-
munities' economic, social, and cultural well‐being. Pathways of threat include disruption of fishing‐related
activities, damage to fishing vessels and coastal infrastructure related to those, the safety of workers at sea and
on land, and the jeopardizing of the well‐being of fishing households and their entire coastal communities. In the
absence of thorough vulnerability assessment and adaptation strategies, this climate stressor will have more
immediate and potentially disastrous impacts. Hidalgo et al. (2022) found that an increase in extreme weather
events puts more at‐risk fishing resources and livelihoods than fishing operations and wider social or economic
aspects. Assessing another food security‐related sector, aquaculture, Rosa et al. (2012) reported that floods can
affect nutrient loads in coastal aquaculture areas, and high inorganic sediment loads can reduce filtration rates of
bivalves. High‐energy events such as storms and cyclones can also lead to sediment transport leading therefore to
increased erosion. Additionally, severe flooding can result in mass mortalities of animals in aquaculture affecting
ponds, rafts, lines, or cages in both coastal and offshore areas. Taking into consideration the limitations posed by
inland fresh water and sheltered coastal areas, such as their limited carrying capacities, the high risk of harmful
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accumulation of farm waste products, scarce availability of coastal areas suitable for coastal aquaculture, and the
expected increase in future demand for fish, offshore expansion has often been proposed. These structures though
will be more exposed to the variability in environmental conditions, especially waves, currents, and winds, that
under extreme events such as Medcyclones can induce higher structural loads on and failure of fish cages and
moorings as highlighted in Karathanasi et al. (2022).

3.5. Natural and Cultural Heritage

Disaster risk management and climate change adaptation, focusing on cultural heritage preservation, have been
highlighted at the United Nations (UN) Sendai Framework for Disaster Risk Reduction 2015–2030
(UNISDR, 2015). Despite these efforts, however, cultural heritage sites are at constant risk and suffer from
the adverse effects of natural and/or human‐induced hazards (Mentzafou & Dimitriou, 2022). The wide range of
weather‐induced natural hazards resulting from Medcyclones affect coastal areas with damage to communities,
infrastructure, and the cultural heritage exposed to these phenomena (Chaumillon et al., 2017). Throughout
human history, floods led to the loss and devastation of several historical monuments or sites and changes in the
cultural landscape. Therefore, storms associated with floods, landslides, and hydrogeological risk are among the
most critical weather‐related hazards in terms of the potential damage to cultural heritage (Figure 8; Bosher
et al., 2019; Nicu, 2017).

One of the most recent and infamous examples in Greece is the collapse of the 150‐year‐old traditional “Plaka”
bridge in February 2015 due to intense precipitation and strong river flow, and the damages of Sanctuary of the
Great Gods at Samothrace Inland in 2017 due to flooding. In Italy, there are records of floods affecting historical
sites; one of the most characteristic examples being the catastrophic flood of 1966 (Sioni et al., 2023), caused by
intense convection driven by a Mediterranean low‐pressure system, that devastated the city of Florence, killing at
least 32 people and causing immense damage to irreplaceable cultural heritage. In the North, the city of Venice
represents a paradigm of coastal flooding due to its worldwide recognized cultural heritage relevance and high
vulnerability to extremely high sea levels, mostly induced by Medcyclones (Ferrarin et al., 2022; Lionello
et al., 2021; Miglietta et al., 2023). However, such a problem is not limited to the city of Venice since several
ancient settlements and important natural and cultural heritage sites located in the Mediterranean low‐elevation
coastal zones (e.g., the Old Town of Dubrovnik, Syracse, Tyre, the Nile, Rhone, and Po deltas) are at risk of
coastal flooding and erosion (Prahl et al., 2018; Reimann et al., 2018). In 2018, the fierce wind generated by an
explosive Medcyclone (known as Vaia storm, Giovannini et al., 2021; Sioni et al., 2023) was responsible for the
largest forest damage ever occurred over the southern Alpine slopes (Chirici et al., 2019), hitting more than 1
million hectares of forest in Northeastern Italy and causing the loss of millions of m3 of wood in an area including
a UNESCO World Heritage such as the Dolomites.

Other cyclone‐related hazards, such as extreme winds and waves play a secondary role in affecting and damaging
cultural and natural heritage. A characteristic impact is damage to natural and human‐made structures due to sea
and wind erosion. These factors, combined with changes in relative humidity and temperature, intense rainfall
extended droughts, earthquakes, etc. set an alarming mixture of conditions for a potentially hazardous envi-
ronment for coastal cultural heritage materials. Due to their location's proximity to large sea bodies, the coastal
cultural heritage sites are exposed to marine spray. Stones and mortars in coastal cultural heritage buildings are
highly affected by the deposition of marine salts leading to pore fracture and, consequently, to the stone and
mortars' weakening. These marine aerosols in combination with strong winds and wind‐driven rain can lead to the
rapid erosion of the surface through material loss (Orr et al., 2018; Sesana et al., 2021). This is a slow process
already observed in archeological sites like the one of Delos, Greece. A similar process was associated with the
collapse of the Azure Window, a natural arch situated on the west coast of Gozo (Maltese Archipelago). The
incident took place in March 2017, and the cause of the collapse of the pillar section is probably associated with
erosion at its base. It was, however, triggered by a violent storm that battered the site at the time (Caruana
et al., 2022). During the storm wave heights of up to around 3 m, wind speeds larger than 16 m/s, and wind gusts
between 18 and 20 m/s were experienced in the region. Furthermore, Medcyclones can induce fire weather
conditions in remote areas, as was recently shown by Berkovich and Raveh‐Rubin (2022), analysing the processes
leading to persistent dry and warm winter events in the eastern Mediterranean.
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4. Advancing Preparedness for Weather Hazards and Impacts Using Operational
Databases
The study of weather hazards and their associated impacts can greatly benefit from the use of operational da-
tabases. These databases provide crucial information on the occurrence of severe weather events and their past
and ongoing effects on societies, enabling the creation of comprehensive data sets essential for understanding
such events. Operational databases are particularly valuable for analyzing the characteristics of different types of
weather hazards, as well as identifying trends, patterns, and the variability of impacts across various economic

Figure 8. Distribution of six selected world heritage sites (WHS) threats inside the European countries. The size of the dots is
a function of the number of affected WHSs in each country. Countries with at least one site affected by the threat are colored
in gray (Source: Valagussa et al., 2020).

Reviews of Geophysics 10.1029/2024RG000853

KHODAYAR ET AL. 17 of 29

 19449208, 2025, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024R

G
000853 by C

ochrane C
zech R

epublic, W
iley O

nline L
ibrary on [05/05/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



sectors, populations, and regions. This information is vital for identifying potential risk factors and vulnerabilities,
ultimately aiding in the development of strategies to mitigate the likelihood and severity of future hazards.
Consequently, it is essential to understand the primary sources of data and information that support not only
academic research but also media outlets, the private sector (e.g., insurance companies) in shaping business
strategies, and policymakers in informing their decision‐making processes.

Generally, the number of fatalities associated with weather hazards, thus including those from Medcyclones, is
mainly collected from press reports (Papagiannaki et al., 2022). Then, the information is included in databases
such as the Emergency Events Database (EM‐DAT) International Disaster Database (http://www.emdat.be/), the
Dartmouth global archive of large flood events (http://www.dartmouth.edu/~floods/), the Italian bibliographical
and archive inventory of landslides and floods in Italy (AVI) flood database (http://avi.gndci.cnr.it/e,n/archivi/
piene_en.htm) or the databases of the Hydrological cycle in the Mediterranean EXperiment (HYMEX; https://
www.hymex.org/; e.g., Llasat et al., 2013).

An important contribution at the Euro‐Mediterranean level is the innovative database of flood fatalities from the
Europe‐Mediterranean region (FFEM‐DB; Papagiannaki et al., 2022) that is now available online at the 4TU
Center for Research Data (FFEM‐DB%20“Database%20of%20Flood%20Fatalities%20from%20the%20Euro‐
Mediterranean%20region”) and is updated approximately every 2 years, as it contains very detailed data on the
fatalities' circumstances and profiles (Petrucci et al., 2022). In its latest version, FFEM‐DB includes data on 2,875
flood fatalities from 12 territories (nine of which represent entire countries) in Europe and the broader Medi-
terranean region from 1980 to 2020. The FFEM‐DB contributes to the emerging need for damage and loss in-
dicators (EC, 2021) and is a valuable tool for a broader understanding of flood risk in the region. Adding
information about the exact triggering effect could contribute significantly to the attribution of flood fatalities and
fatal flood events in Medcyclones.

The European Severe Weather Database (ESWD; https://eswd.eu/) operated by the European Severe Storms
Laboratory is another resource with data on severe weather hazards and their impacts that includes the Medi-
terranean region (Dotzek et al., 2009). As of 2023, this database contains more than 300,000 individual reports of
severe weather. The reports are collected from online media and eyewitness reports by a team at European Severe
Storm Laboratory (ESSL, https://www.essl.org/cms/) and a network of volunteers throughout Europe. The ESSL
staff and trusted partners ensure the quality of the reports by comparing the reports with meteorological data, such
as satellite and radar observations, and looking for other sources to confirm the reports.

Unlike EM‐DAT, the ESWD does not typically aggregate individual reports into compound events. This allows
users to apply their own criteria for grouping events as needed. The exception to this rule is tornadoes—multiple
reports referring to the same tornado are merged into a single entry. Across Europe, the database is used by a range
of organizations including 16 public weather services, and international organizations (ECMWF, EUMETSAT).
In addition, several commercial companies from the reinsurance sector and companies specialized in risk
modeling use the data. A relevant example of the capabilities of the ESWD data set is given in Figures 9a and 9b,
which illustrates the hazards and the impacts produced by Storm Vaia, 27–30 October 2018, an intense Med-
cyclone that resulted in severe damage and loss of lives in the Central Mediterranean (Davolio et al., 2020). A
representative example of an operational database in the Mediterranean region is the available online database on
high‐impact weather events in Greece (HIWE‐DB, https://meteo.gr/weather_cases.cfm) (Papagiannaki
et al., 2013), where weather events with socio‐economic impacts in the Greek territory are being systematically
recorded since the year 2000. The HIWE‐DB draws information from central and local media and includes
meteorological observations from the surface weather station network operated by the Meteo unit of the National
Observatory of Athens (Lagouvardos et al., 2017). The database makes it possible to link each triggering hazard
with the various impacts at the prefecture and/or municipality level. Moreover, each event included in the HIWE‐
DB is classified in terms of both the meteorological hazard intensity and the impact severity, permitting thus
further risk and vulnerability analyses. The Meteorology unit at NOA uses the database operationally to analyze
and visualize extreme events and their main impacts. The informative material is then published online on the
relevant publicly available website, www.meteo.gr, with over 300,000 daily visitors. A relevant example is given
in Figure 9b, which illustrates the hazards and the impacts produced by Medicane Ianos. Ianos affected Greece on
18–19 September 2020, resulting in four fatalities and devastating impacts due to heavy rainfall, gusty winds, and
high waves (Lagouvardos et al., 2022).
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5. Conclusions, Identification of Gaps, and Recommendations
Medcyclones are responsible for a variety of weather‐related hazards, with future scenarios pointing to increasing
destructiveness of these phenomena in the region. According to the International Disaster Database (https://
emdat.be) of the Center for Research on the Epidemiology of Disasters (CRED), during the last 100 years, more
than 14,000 deaths have been attributed to hazards related to Medcyclones, with this number probably being
underestimated. While these records provide insight into the recent impacts of Medcyclones, they offer only a
limited perspective on their long‐term variability. To better assess potential future changes, it is crucial to
establish a historical baseline by providing a longer‐term view of Mediterranean cyclones. Long‐term records, as
demonstrated in studies of Atlantic cyclones (e.g., Raible et al., 2018), can help distinguish natural variability
from anthropogenic influences and improve future projections. Despite this knowledge, there is a particular lack
of systematic quantification of cyclones' contribution to Mediterranean high‐impact weather, and a need to step
from hazard forecasts to impact‐based forecasts (Flaounas et al., 2022; Zhang et al., 2021). This review con-
tributes to this development by collecting and summarizing existing knowledge regarding the societal impacts of
Medcyclones and the vulnerability of the main socio‐economic sectors.

To efficiently design integrated responses toward climate change impacts and simultaneously create resilient
societies, there is a need for a paradigm shift toward impact studies encompassing multi‐sectoral effects. This
change of paradigm will support decision‐makers in adapting socio‐economic systems to these evolving risks.
Part of the challenge lies in the lack of efficient communication among communities with specific expertise that
perceive and evaluate isolated risks. Furthermore, most impact assessments for the region focus on past condi-
tions and historical events, while there is limited literature on future impacts. This is of greater relevance to the
southern Mediterranean countries that are also most prone and vulnerable to climatic changes and extreme
weather events. Besides changes in the frequency, intensity, and other characteristics of Medcyclones under a
warmer climate, their nonlinear impacts strongly depend on the socio‐economic conditions and adaptive capacity
of each Mediterranean country, including financial and technological means, access to resources, political sta-
bility, willingness for transformative changes, and more. Thus, detailed knowledge about each Mediterranean
country's socio‐economic conditions and adaptive capacity is essential.

Urban areas are more at risk of cyclone impacts from the perspective of the higher population density and the
potentially high infrastructural and socio‐economic losses. In this respect, growing urbanization with an
increasing population demands efficient cyclone management systems, referred to as any decision‐support tool to
assist in managing the impacts of cyclones. In addition to population growth, internal and international migration
is expected to disproportionately increase the population density, particularly in the coastal urban areas (Cosby
et al., 2024). Given the projections in terms of sea level rise, the comprehensive impact of extreme rain intensities

Figure 9. Visual representation of affected areas and recorded fatalities (a) for Greece during Ianos passage, 18–19 September 2020 using the HIWE‐DB, and (b) Italy
during Vaia passage, 25th October to 4th November 2018 using the European Severe Weather Database (ESWD) database.
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and storm surges should be specifically addressed in future planning of coastal cities. Adaptation actions on the
environment in coastal areas, in terms of water resources, energy, infrastructure and urban planning, human
health, economy, law, and education are recommended. The diversification of local and regional current socio‐
economic models, which are highly dependent on tourism in islands and coastal regions, is needed to increase the
community and national economic, social, and population resilience. Hence, there is a need to consider (a) more
comprehensive Medcyclones hazard scenarios in combination with climate change pathways, focusing particu-
larly on sea level rise; (b) more accurate projections of compound extremes over the Mediterranean given the
limited studies available despite its relevance, (c) local socio‐economic scenarios dealing especially with eco-
nomic, demographic, and social development; and (d) more diversified adaptation scenarios, in particular for the
most populated regions, such as coastal urban areas.

Particularly concerning the direct and indirect impacts resulting from Medcyclones‐related weather hazards on
priority socio‐economic sectors in the region, we conclude that, despite the relevance of the topic, dedicated
studies are generally missing. The current trends in cyclone‐related hazards in the Mediterranean make us
envision significant future changes in many priority sectors for society, thus, not only a historical quantification of
cyclones' contribution to Mediterranean high‐impact weather and related impacts is desirable, but also future
projections. Regarding human health, while the direct physical health impacts of Medcyclones and associated
extreme weather are well‐understood, the indirect ones, such as mental health impacts, in the context of a
changing climate remain an under‐researched field, both internationally and in the Mediterranean region (Linares
et al., 2020). Research on the health effects of cyclones has largely focused on their immediate physical con-
sequences, while longer‐term, indirect impacts receive less attention. Studying the mental health effects of such
events presents several methodological challenges (Stanke et al., 2012). Therefore, follow‐up evaluations of the
health impacts of extreme events should account for both direct and indirect consequences, with particular
emphasis on developing innovative methodologies to assess better and document mental health outcomes. Also,
extremely cold conditions affecting the health and well‐being of the population in relation to Medcyclones are
better understood than high temperatures in relation to these phenomena, as is the case of “Sharav” cyclones,
abundant during springtime in the easternMediterranean (Alpert & Ziv, 1989; Hannachi et al., 2011). The impacts
of the latter phenomenon on public health have not been assessed yet.

Energy security is an additional major concern in Mediterranean and European countries. The Mediterranean
Basin is a densely populated region where the energy demand increased by 6% from 2010 to 2020 due to eco-
nomic development and population growth. The demand is expected to continuously increase toward the mid‐
century (Drobinski et al., 2020). In the future, the energy production of the Mediterranean region will lean
increasingly on renewable energy sources, such as solar, wind, and hydro energy. However, under business‐as‐
usual scenarios (e.g., RCP8.5 or SSP5‐8.5), hydropower capacity will decrease in the Mediterranean by the 2050s
by 5%–15% due to the decrease in precipitation. Thus, we can expect the electricity transmission system to
become more exposed to variations in weather in the future (Drobinski et al., 2020). Generally, in the field of
energy, there is a significant lack of data and studies associating energy production, distribution, storage, and
power outages with natural disasters in the Mediterranean region. This is even more evident when focusing on
Medcyclone impacts on the energy sector and particular variables for example, wind extremes, precipitation, and
floods. The existing gap in impact data availability strongly affects the development of impact tools and models
which could increase the preparedness for power outages and grid failures (e.g., Jasiūnas et al., 2023). Beyond the
most obvious impacts often associated with structural damages or impact on energy production, secondary issues
can emerge. Forecasting cyclones alongside their paths and potential impacts can be quite challenging, especially
in regions such as the Mediterranean Basin (Chaboureau et al., 2012; Flaounas et al., 2022; Pantillon et al., 2024;
Portmann et al., 2020; Rodwell et al., 2013). Predictability can have a prominent impact on energy production and
demand forecasting, in a sector characterized by large uncertainties. Even relatively small changes in the cyclone
path can have a substantial impact on wind power, affecting the estimations employed by the national and in-
ternational energy markets. Thus, this is a field worth investing in the future to obtain accurate information on
energy production and demand.

Regarding transportation and infrastructuremajor disruptions can occur even in countries with highly reliable
infrastructure systems. Besides, the expected increase in population in the region in combination with the sea level
rise will increase the necessity of adaptation strategies, particularly in urban and coastal areas.While wind and rain
damage to overhead power lines is often seen as the primary impact, the issue extends beyond resilience. It involves
addressing broader vulnerabilities. Strengthening transmission systems through measures like clearing trees,
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burying lines, or using stronger poles is important, but a more comprehensive, multi‐dimensional approach is
needed. Interventions that, however, imply high cost, can include (a) the increase of backup routes during and after
extremeweather events, (b) the enhancement of earlywarning systems, (c) the construction or expansion of coastal
defenses, or (d) interventions to increase the height of critical infrastructure (Zittis, Ahrens, et al., 2022). Countries
in the Middle East and North Africa (MENA) are particularly exposed given that the population has quadrupled
between 1960 and 2015, and the degree of urbanization has risen from 35% to 64% during the same period (Cramer
et al., 2018). The growing urbanization, supported by continuing internal migration processes in the region is
creating centers of increased vulnerability for local population growth. The focus must therefore be on a multi‐
faceted approach that includes strengthening transportation and infrastructure resilience, while also considering
social and environmental factors like migration, coastal zone management, and long‐term urban planning.

The agricultural economy constitutes a priority sector in the Mediterranean region, with food insecurity
increasing and a high risk of worsening in the future (Abis &Demurtas, 2023; Al Sharjabi et al., 2024; Caracciolo
& Alessandro, 2018). The agriculture sector will need to adapt promptly and efficiently to tackle the climate‐
induced challenges of future crop production and meet the increasing food demand of the growing regional
population (Hossain et al., 2020; Mrabet et al., 2020; Zittis, Almazroui, et al., 2022). While the impact of mean
climate change on agriculture and the role of droughts and heat extremes has been widely investigated (e.g., Biess
et al., 2024; Heino et al., 2023; Sutanto et al., 2024), the effect of extreme precipitation events and sea level rise on
future crop yields is less studied. In addition, more research is required to fully comprehend the synergies and
trade‐offs within the regional food‐water‐energy nexus and identify any potential crop and human health im-
plications under a changing climate.

Parallel to all this, there is increased concern regarding the preservation of cultural and natural heritage in a
rapidly changing climate (UNISDR, 2015). Despite the protection efforts, reports of damages in historical sites
are quite common. The damage and loss of natural heritage occur more and more frequently in association with
weather‐related hazards, some of them related to the occurrence of Medcyclones, affecting anything from beaches
to forests and wildlife. The need to address all these challenges, however, is not reflected by the amount of quality
research, especially on a nationwide scale. To this end, communities and stakeholders should focus on four main
targets: more resources, high‐quality data, advanced research, and stricter laws.

The benefit and value of operational databases of weather hazards and related impacts are unquestionable because
they provide essential information about weather‐related impacts on society, allowing a deeper understanding of
trends and threats. However, adding information to such databases about the exact triggering phenomenon will
enable the accurate attribution of relevant damages and lives lost to Medcyclones, also allowing for an individual
financial assessment and cost‐benefit analysis. Furthermore, given the increasing number of data sets worldwide,
and in the Mediterranean, a harmonization of selection criteria and data sets would be desirable to facilitate data
processing and to draw robust conclusions.

Since the devastating impact of CycloneDaniel in theMediterranean region, there has been a heightened awareness
among the general public, stakeholders, and policymakers regarding the severe consequences associated with such
extreme weather events. However, despite this increased recognition, significant efforts are still required from the
scientific community to advance the understanding of these cyclones, particularly their societal impacts. A deeper
understanding of the dynamics, frequency, and future trends of Medcyclones is crucial for improving risk
assessment, strengthening early warning systems, and developing more effective mitigation and adaptation stra-
tegies. While significant progress has been made in recent years, the assessment of MedCyclones' contribution to
socio‐economic losses remains largely underexplored. This review advances our understanding in this critical area,
providing a foundation for future research and informing strategies to enhance societal resilience.
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through Ferrarin, Pantillon, et al. (2023). In Figure 5 data is available through Papagiannaki et al. (2013). In
Figure 6 data is available through Papagiannaki et al. (2022). Specifically, the data is freely available in the 4TU.
ResearchData repository, at Petrucci et al. (2022), where the user can access and extract all the data (.txt and.csv
files) collected for the database FFEM‐DB that provides not only the number of fatalities per flood event but also
detailed information about the profile of victims and the fatalities circumstances. In Data for Figure 7 is available
from https://data.med‐tso.org/ (power line length by year) and https://www.worlddata.info/ (country areas). In
Figure 8 data is available through Valagussa et al. (2020). In Figure 9 data is available through the HIWE‐DB
(https://meteo.gr/weather_cases.cfm, https://meteo.gr/weatherEvents.cfm) and ESWD database (https://eswd.
eu/). As far as the online version of the HIWE‐DB is concerned (Figure 9), the user can search for information
about the weather events on https://meteo.gr/weather_cases.cfm based on various criteria: 1. the weather intensity
(3‐level index) based on the meteorological observations of the stations' network of METEO/National Obser-
vatory of Athens (www.meteo.gr), 2. the severity of the socio‐economic impacts (3‐level index) based on
qualitative and quantitative impact data, 3. the year they occurred, and 4. the prefecture they affected. Also, and
translated into English, the user can find information about the HIWE‐DB events on the dynamic map on https://
meteo.gr/weatherEvents.cfm based on various criteria: year, month, specific phenomenon, number of fatalities of
the event, number of fatalities in the area that the user zooms in, the weather intensity (3‐level index), the impact
severity (3‐level index).
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